| Názov : | Lineární algebra |  | Typ materiálu:  | printed text |  | Autor(i):  | I. M. Geľfand, Author |  | Údaje o vydaní: | 1. vyd. |  | Editor: | Praha : Nakladatelství Československé akademie věd |  | Dátum publikovania:  | 1953 |  | Strany:  | 228 s. |  | Veľkosť:  | 8° |  | Poznámka:  | 1-3300 výt. Pozn.  |  | Jazyky : | Czech (cze) |  | Abstrakt:  | Autor vychází od n-rozměrného lineárního prostoru, jehož prvky jsou vektory, ve svých úvahách však se nezabývá prostory o nekonečném počtu rozměrů, jako je na př. prostor Hilbertův. Probírá v obsáhlých statích velkou řadu pojmů definic a vět platných pro reálný lineární prostor vícerozměrný a rozšiřuje jejich platnost na prostor komplexní. Uvádíme definici base jako množiny n-lineárně nezávislých vektorů n-rozměrného prostoru, definici souřadnic a podprostoru, věty o trasformaci souřadnic, o isomorfismu a axiomatic. definici skalárního součinu jako základu, který dává prostředky k zvládnutí eukleidovské geometrie. Kniha mimo jiné věnuje dále pozornost orthogonalisačnímu procesu, nalezení orthogonálního průmětu vektoru na podprostor. stanovení jak kolmice z bodu na podprostor tak i vzdálenosti bodu od podprostoru. V dalších obsahově bohatých kapitolách se obrací k theorii lineárních, bilineárních a kvadratických forem, lineárních zobrazení a jejich kanonickému tvaru. Podává pak definici duálního prostoru Ř k prostoru R jako lineárního prostoru, jehož vektory jsou lineární funkce v R. Při současném studiu prostorů R a Ř nazývají se vektory z R kontravariantní a vektory z Ř kovariantní. Po zavedení multilineárních funkcí, které jsou jednou z možných realisací tensorů a probrání operací s tensory, podává v dodatcích poruchovou theorii a numerické metody lineární algebry.  |   
 
	  		Lineární algebra [printed text] /  I. M. Geľfand, Author  . -  1. vyd. . -  Praha : Nakladatelství Československé akademie věd, 1953 . - 228 s. ; 8°. 1-3300 výt. Pozn.  Jazyky : Czech ( cze) | Abstrakt:  | Autor vychází od n-rozměrného lineárního prostoru, jehož prvky jsou vektory, ve svých úvahách však se nezabývá prostory o nekonečném počtu rozměrů, jako je na př. prostor Hilbertův. Probírá v obsáhlých statích velkou řadu pojmů definic a vět platných pro reálný lineární prostor vícerozměrný a rozšiřuje jejich platnost na prostor komplexní. Uvádíme definici base jako množiny n-lineárně nezávislých vektorů n-rozměrného prostoru, definici souřadnic a podprostoru, věty o trasformaci souřadnic, o isomorfismu a axiomatic. definici skalárního součinu jako základu, který dává prostředky k zvládnutí eukleidovské geometrie. Kniha mimo jiné věnuje dále pozornost orthogonalisačnímu procesu, nalezení orthogonálního průmětu vektoru na podprostor. stanovení jak kolmice z bodu na podprostor tak i vzdálenosti bodu od podprostoru. V dalších obsahově bohatých kapitolách se obrací k theorii lineárních, bilineárních a kvadratických forem, lineárních zobrazení a jejich kanonickému tvaru. Podává pak definici duálního prostoru Ř k prostoru R jako lineárního prostoru, jehož vektory jsou lineární funkce v R. Při současném studiu prostorů R a Ř nazývají se vektory z R kontravariantní a vektory z Ř kovariantní. Po zavedení multilineárních funkcí, které jsou jednou z možných realisací tensorů a probrání operací s tensory, podává v dodatcích poruchovou theorii a numerické metody lineární algebry.  |  
  |